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We derive the thermodynamic curvature of a two-dimensional ideal anyon gas of particles obeying fractional
statistics. The statistical interactions of anyon gas can be attractive or repulsive. For attractive statistical
interactions, thermodynamic curvature is positive and for repulsive statistical interactions, it is negative, which
indicates a more stable anyon gas. There is a special case between the two where the thermodynamic curvature
is zero. Small deviations from the classical limit will also be explored.
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I. INTRODUCTION

In 1979, Ruppeiner introduced a Riemannian metric struc-
ture representing thermodynamic fluctuation theory, which
was related to the second derivatives of the entropy �1,2�.
One of the most significant aspects of his theory was the
introduction of the Riemannian thermodynamic curvature as
a qualitatively new tool for the study of fluctuation phenom-
ena. On a purely phenomenological level, it was initiated by
Weinhold who introduced a sort of Riemannian metric into
the space of thermodynamic parameters �3�. However, it
turned out that the two metrics introduced by Weinhold and
Ruppeiner were conformally equivalent �4,5�. It is natural to
calculate the thermodynamic curvature for models whose
thermodynamics is exactly known. This has been done by
several authors �6–17�. Janyszek and Mrugała worked out
the thermodynamic curvature for ideal Fermi and Bose gases
and reported that the sign of the thermodynamic curvature is
always different for ideal Fermi and Bose gases. It was ar-
gued that the scalar curvature could be used to show that
fermion gases were more stable than boson gases �9�.

For a two-dimensional system, the statistical distribution
may interpolate between bosons and fermions when there is
no mutual statistics and that respects a fractional exclusion
principle. Anyons constitute such a physical system and in
the present paper, we investigate the Ruppeiner geometry of
an ideal anyon gas and its stability.

The outline of this paper is as follows. In Sec. II, the
thermodynamic properties of anyons is summarized and the
internal energy for the anyon gas is derived. In Sec. III, the
Ruppeiner metric of the parameter space of this system is
obtained and, finally, the thermodynamic curvature of the
anyon gas in the classical limit is evaluated. As we will see,
the sign of the thermodynamic curvature is not constant and
a stability condition can be introduced. In Sec. IV, the
Ruppeiner curvature for small deviations from the classical
limit is considered.

II. THERMODYNAMIC PROPERTIES OF IDEAL GAS OF
FRACTIONAL STATISTICAL PARTICLES

The concept of “anyons” or particles with fractional sta-
tistics in two-dimensional systems �18,19� has found appli-

cations in the theory of fractional quantum Hall effect �20�.
Therefore, such particles and their thermodynamic properties
have been the subject of research by a number of authors
�21–25�. The statistical weight of N identical particles occu-
pying a group of G states for bosons or fermions is, respec-
tively, given by

Wb =
�G + N − 1�!
N!�G − 1�!

or Wf =
G!

N!�G − N�!
. �1�

A simple interpolating function which implies fractional ex-
clusion is

W =
�G + �N − 1��1 − ���!
N!�G − �N − �1 − ���!

�2�

with �=0 corresponding to bosons, �=1 to fermions, and
0���1 to intermediate statistics. Haldane �21� defined the
statistical interactions �ij through the linear relation

�di = − �
i

�ij�Nj , �3�

where ��Nj� is a set of changes allowed to occur in the
particle number. W��Ni��, the number of system configura-
tion corresponding, to the set of occupation number �Ni�, is
given by

W��Ni�� = �
i

�Gi + Ni − 1 − � j�ij�Nj − �ij��!
Ni!�Gi − 1 − � j�ij�Nij − �ij��!

�4�

The parameter �ij is rational. We call �ij for i� j mutual
statistics. The above equation applies to the usual Bose or
Fermi ideal gas with i labeling single particle energy levels.
So with an extension of the meaning of species, this defini-
tion allows different species indices to refer to particles of
the same kind but with different quantum numbers.

Under the constraint of fixed particle number and energy,

N = �
i

Ni,

E = �
i

�iNi, �5�

the grand partition function Z is determined by Haldane and
Wu �21,22� who state the counting rule as follows:
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Z = �
�Ni�

W��Ni��exp	�
i

Ni��i − �i�/kT
 , �6�

where, � and T are the Lagrange multipliers incorporating
the constraints of fixed particle number and energy, respec-
tively.

The stationary condition of the grand partition function Z

with respect to Ni gives the statistical distribution ni�
Ni

Gi
of

an ideal gas of fractional statistically identical particles with
the same chemical potential �=�i, �ij =��ij and temperature
T as derived by Wu,

ni =
1

w�e��i−��/kT� + �
, �7�

where the function w��� satisfies the functional equation

w�����1 + w����1−� = � � e��−��/kT. �8�

Equation �7� yields the correct solutions for the familiar
bosons ��=0�, w���=�−1 and fermions ��=1�, w���=�.
Some exact solutions of Eq. �7� in the special case of � have
been presented by Aoyama �23�. However, in the classical
limit exp���−�� /kT�	1, we have

w��� = � + � − 1, �9�

ni =
1

e��i−��/kT + 2� − 1
. �10�

We may evaluate the internal energy and particle number
within this limit,

U = �
i

ni�i = �
i

�i

e��i−��/kT + 2� − 1
, �11�

N = �
i

ni = �
i

1

e��i−��/kT + 2� − 1
. �12�

In the thermodynamic limit and two-dimensional momentum
space of nonrelativistic anyons with a mass m, the summa-
tion can be replaced by the integral,

�
i

→
V

h22
m�
0

�

d� �13�

and, finally, the internal energy and particle number will be

U =
2
Vm

h2�1 − 2���0

� �d�

��1 − 2��e�/kT�−1e�� − 1
, �14�

N =
2
Vm

h2�1 − 2���0

� d�

��1 − 2��e�/kT�−1e�� − 1
, �15�

or, in a more compact form,

U =
V

1 − 2�
−2�−1g2�y� , �16�

N =
V

1 − 2�
−2g1�y� , �17�

where, = h
2
mkT

is the mean thermal wavelength of the par-
ticle, �=1 /kT,

gl�y� =
1

��l��0

� xl−1dx

y−1ex − 1
= �

n=1

�
yn

nl . �18�

��l� here denotes the � function, y= �1−2��z, and fugacity is
z=e−�=e�/kT �26�.

III. THERMODYNAMIC CURVATURE
OF THE ANYON GAS

Ruppeiner geometry is based on the entropy representa-
tion, where we denote the extended set of n+1 extensive
variables of the system by X= �U ,N1 , . . . ,V , . . . ,Nr�, while
Weinhold worked in the energy representation in which the
extended set of n+1 extensive variables of the system were
denoted by Y = �S ,N1 , . . . ,V , . . . ,Nr�. These variables are
identical to the extended set of extensive variables in the
entropy representation, except in the first slot where the en-
tropy, rather than the internal energy, appears. The corre-
sponding conjugate intensive parameters

Pi =
�U

�Yi �19�

are P= �T ,�1 , . . . ,−p , . . . ,�r�. Then, the metrics of Weinhold
and Ruppeiner geometry are given by

dsR
2 = �i� jSdXidXj �20�

and

dsW
2 = − �i� jUdYidY j . �21�

In 1984, Mrugała �4� and Salamon et al. �5� proved that these
two metrics are conformally equivalent with the inverse of
the temperature, �, as the conformal factor

dsR
2 = �dsW

2 . �22�

One can work in any thermodynamic potential representation
that is the Legendre transform of the entropy or the internal
energy. The metric of this representation may be the second
derivative of the thermodynamic potential with respect to
intensive variables; for example, the thermodynamic poten-
tial � which is defined as

� = ���Fi�� , �23�

where F= �1 /T ,−�1 /T , . . . , P /T , . . . ,−�r /T�. � is the Leg-
endre transform of entropy with respect to the extensive pa-
rameter Xi,

Fi =
�S

�Xi . �24�

The metric in this representation is given by

BEHROUZ MIRZA AND HOSEIN MOHAMMADZADEH PHYSICAL REVIEW E 78, 021127 �2008�

021127-2



gij =
�2�

�Fi�Fj . �25�

Janyszek and Mrugała used the partition function to intro-
duce the metric geometry of the parameter space �9�,

gij =
�2 ln Z

��i�� j , �26�

where �i=Fi /k.
According to Eqs. �16� and �17�, the parameter space of

an ideal anyon gas is �1 /kT, −� /kT� or equivalently ��, ��.
For computing the thermodynamic metric, V is selected as
the constant system scale. We can evaluate the elements of
the metric by the relevant definition in Eq. �26�,

g�� =
�2 ln Z

��2 = − 	 �U

��



�

=
2B

�1 − 2��
�−3g2�y� ,

g�� = g�� =
�2 ln Z

����
= − 	 �U

��



�

=
2B

�1 − 2��
�−2g1�y� ,

g�� =
�2 ln Z

��2 = − 	 �N

��



�

=
B

�1 − 2��
�−1g0�y� , �27�

where B= 2m
V
h2 and y= �1−2��z= �1−2��e−�. From Eq. �18�,

one obtains an important relation

�gl�y�
�y

=
1

y
gl−1�y� . �28�

It is easy to show that

�gl�y�
��

= − gl−1�y� . �29�

We consider systems with two thermodynamic degrees of
freedom and, therefore, the dimension of the thermodynamic
surface or parameter space is equal to two �D=2�. Thus, the
scalar curvature is given by

R =
2

det g
R1212. �30�

Janyszek and Mrugała demonstrated �10� that if the metric
elements are written purely as the second derivatives of a
certain thermodynamic potential, the thermodynamic curva-
ture may then be written in terms of the second and third
derivatives. The sign convention for R is arbitrary, so R may
be either positive or negative for any case. Our selected sign
convention is the same as that of Janyszek and Mrugał �9�,
but different from �2�. In two-dimensional spaces, the for-
mula for R may be written as

R =

2� g�� g�� g��

g��,� g��,� g��,�

g��,� g��,� g��,�
�

�g�� g��

g�� g��
�2 . �31�

We use the following equations:

g��,� =
− 6B

�1 − 2��
�−4g2�y� ,

g��,� = g��,� =
− 2B

�1 − 2��
�−3g1�y� ,

g��,� = g��,� =
− B

�1 − 2��
�−2g0�y� ,

g��,� =
− B

�1 − 2��
�−1g−1�y� �32�

to obtain

R =
4�2

V
�1 − 2��

�	g0�y�g1
2�y� − 2g2�y�g0

2�y� + g1�y�g2�y�g−1�y�
�2g2�y�g0�y� − g1

2�y��2 
 .

�33�

In Table I, we have collected some numerical values of R
computed by Maple. R is given in units of 4�2

V and 1 /kT
=constant, i.e., for an isotherm. It is evident from Table I that
for ��

1
2 , the thermodynamic curvature R is always positive

while it is always negative for ��
1
2 . This result indicates

that the anyon gas is more stable when ��
1
2 . For �= 1

2 , the
thermodynamic curvature is zero. So, the sign of R changes
at �= 1

2 . In the classical limit, it has been shown that �22�

PV = NkT�1 − �1 − 2��N2/4V� . �34�

So the “statistical interactions” are attractive or repulsive de-
pending on whether ��

1
2 or ��

1
2 . Therefore, the thermo-

dynamic curvature is positive for attractive statistical inter-
actions and it is negative for repulsive statistical interactions.
Our interpretation of stability is, therefore, consistent with
bosonic and fermionic gases. This interpretation measures
the looseness of the system to fluctuations and does not refer
to the fact that the metric is definitely positive. For �= 1

2 , the
equation of state is like that of an ideal classical gas where its
thermodynamic curvature is zero.

IV. BEYOND THE CLASSICAL LIMIT

In the preceding section, the thermodynamic curvature
was evaluated in the classical limit. In what follows, we will
first investigate a small deviation from the classical limit and
its results for the thermodynamic curvature. Deviations from
the classical limit and a more general solution of Eq. �8� is
given by the following function:

w��� = � + � − 1 +
c1

�
+

c2

�2 +
c3

�3 + ¯ , �35�

where the constant coefficients c1 ,c2 , . . . can be evaluated on
the condition that at each order of �, the w��� satisfies �8� and
so we obtain

c1 = 1
2��1 − �� ,
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c2 = 1
3��1 − ���1 − 2�� ,

c3 = 1
8��1 − ���1 − 3���2 − 3�� , �36�

The other coefficient can be evaluated along the same lines.
For a small deviation from the classical limit, we may use
only the first correction in �35� which leads to the following
form for Eq. �7�:

ni =
1

� + 2� − 1 +
c1

�

. �37�

By expanding about the classical value of ni, we can find a
correction up to the leading order,

ni =
1

� + 2� − 1
−

c1

�3 . �38�

Now, we can easily evaluate the internal energy and particle
number as well as the thermodynamic metric along the lines
set in the preceding section so that finally, the thermody-
namic curvature could be worked out numerically. The re-
sults are represented in Fig. 1. It can be seen that the values
of the thermodynamic curvature are different from the clas-
sical limit. It is interesting that the zero point of the thermo-
dynamics curvature is shifted from �= 1

2 �classical limit� to
the lower numbers. This means that quantum corrections
change the value of � where we have a free noninteracting
gas. This is the basic result of this paper.

The thermodynamic curvature for �= 1
2 can be worked out

in the full physical range. For this special case, Eq. �8� be-

TABLE I. Scalar thermodynamic curvature R for chosen value of the fugacity �in the classical limit� and
various values of 0���1 for anyon gas.

z=0.001 z=0.005 z=0.01 z=0.1

�=0.0 0.2500144897 0.2500699315 0.2501403817 0.2515411180

�=0.1 0.2000094605 0.2000447381 0.2000895695 0.2009653621

�=0.2 0.1500051368 0.1500250813 0.1500503648 0.1505316710

�=0.3 0.1000016230 0.1000111807 0.1000223691 0.1002314415

�=0.4 0.0500012375 0.0500028979 0.0500055903 0.0500566821

�=0.5 0.0 0.0 0.0 0.0

�=0.6 −0.0499987375 −0.0499971990 −0.0499944358 −0.0499455377

�=0.7 −0.0999977160 −0.0999888716 −0.0999778088 −0.0997863640

�=0.8 −0.1499951380 −0.1499750132 −0.1499502686 −0.1495285050

�=0.9 −0.1999909479 −0.1999556176 −0.1999117788 −0.1991775621

�=1.0 −0.2499859954 −0.2499310365 −0.2498624835 −0.2487388188

a

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

K 0 . 2

K 0 . 1

0

0 . 1

0 . 2

FIG. 1. �Color online� The thermodynamic curvature as a func-
tion of �. The dashed-dotted line corresponds to the thermodynamic
curvature for the classical limit for an isotherm and z=0.01. The
solid line corresponds to the small deviation from the classical limit
and represents the thermodynamic curvature at z=0.3.

z

2 0 4 0 6 0 8 0 1 0 0

K 0 . 3

K 0 . 2

K 0 . 1

0

FIG. 2. �Color online� The thermodynamic curvature as a func-
tion of z �fugacity� for �= 1

2 and an isotherm in the full physical
range.
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comes a quadratic equation which can be easily solved to
give

ni =
1

1
4 + �2

. �39�

Thus, the internal energy and particle number can be ob-
tained,

U =
8
Vmz�2

�2 3F2	1

2
,
1

2
,
1

2
;
3

2
,
3

2
;−

z2

4

 ,

N =
4
Vm�

�2 arcsinh	 z

2

 . �40�

Calculation of the thermodynamic curvature is straightfor-
ward and the result is represented in Fig. 2. It shows that for
�= 1

2 , the thermodynamic curvature is zero only at the clas-
sical limit.

V. CONCLUSION

The ideal anyonic gas in the classical limit has two dif-
ferent behaviors depending on whether ��

1
2 or ��

1
2 . For

��
1
2 , the statistical interaction is attractive and the scalar

thermodynamic curvature is positive. Thus, we may call the
ideal anyonic gas in this case “Bose-like.” Along these lines,
the statistical interaction is repulsive for ��

1
2 and the scalar

thermodynamic curvature is negative. Thus, the ideal
anyonic gas in this case is “Fermi-like.” As shown in �9,27�,
we may consider the thermodynamic curvature as a measure
of the stability of the system: The bigger the value of R, the
less stable is the system. Therefore, the ideal anyonic gas in
a Fermi-like case ���

1
2 � is more stable than in the Bose-like

case ���
1
2 �. Deviations from the classical limit move the

zero point of the thermodynamic curvature from �= 1
2 to the

lower values.
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